Current Research Projects

Research in IST cuts across traditional boundaries to drive interdisciplinary discovery and innovation. Our research is sponsored by a variety of national and international agencies, and we collaborate with diverse groups of scholars within and beyond Penn State. Explore our funded projects to see how IST's transformative research is addressing the world's most complex problems at the intersection of information, technology, and society.

|||||||||
Researcher:
Hu, Hong
Sponsoring Agency: National Science Foundation
Given the constant threat of software vulnerabilities and malicious attacks, the computer security community is always working on improving defense mechanisms for real-world use. At the same time, they also need to make sure these defenses can stand up to determined attackers who are ready to exploit any weaknesses. This project aims to evaluate these practical defense mechanisms, spotting and fixing potential issues before attackers can cause major problems. The results will push for more automated defense improvement, affecting many research areas. Learn more...
Research Areas: Privacy and Security
Term: -
Researcher:
Hosseini, Hadi
Sponsoring Agency: National Science Foundation
CAREER: Robust Fairness in Matching MarketsLearn more...
Research Areas: Privacy and Security
Term: -
Researcher:
Wang, James
Sponsoring Agency: National Science Foundation
Collaborative Research: CCRI: New: An Open Data Infrastructure for Bodily Expressed Emotion UnderstandingLearn more...
Research Areas: Privacy and Security
Term: -
Researcher:
Hills, Michael; Giacobe, Nicklaus A.
Sponsoring Agency: National Security Agency
DoD NSA CySP 2023-24Learn more...
Research Areas: Privacy and Security
Term: -
Researcher:
Lee, Dongwon; Giacobe, Nicklaus A.
Sponsoring Agency: National Science Foundation
Penn State CyberCorps; Scholarship for Service ProgramLearn more...
Research Areas: Privacy and Security
Term: -
Researcher:
Sponsoring Agency: National Science Foundation
We propose a new disciplinary concept of computational Screening and Surveillance (CSS) that utilizes edge learning to collect, analyze and interpret both physical and physiologic data of human subjects, to detect early indicators of diseases, and monitor health changes in both individuals and populations. Real-time information, knowledge, and insights from extreme-scale CSS will revolutionize our understanding, prediction, intervention, treatment, and management of acute/infectious (e.g. flu, COVID), chronic physical and psychological/psychiatric diseases, resulting in huge savings for numerous diseases each costing hundreds of billion dollars every year. Learn more...
Research Areas: Privacy and Security
Term: -
Researcher:
Hu, Hong
Sponsoring Agency: National Science Foundation
As cyber attackers are always exploring novel, low-cost hacking vectors to bypass current defenses, security researchers should examine the remaining threats comprehensively in order to develop effective defenses in advance. Within program memory, attackers are shifting their attentions from control hijacking to more stealthy, pure data manipulation: they aim to modify security-critical variables to bypass security checks, like authentication and authorization. Researchers must understand which variables determine application security before developing efficient defenses to prevent so-called data-only attacks. This project proposes three thrusts to comprehensively understand the practicality of automatically constructing data-only attacks. Learn more...
Research Areas: Privacy and Security
Term: -
Researcher:
Laszka, Aron
Sponsoring Agency: National Science Foundation
SCC-IRG Track 1: Mobility for all - Harnessing Emerging Transit Solutions for Underserved CommunitiesLearn more...
Research Areas: Privacy and Security
Term: -
Researcher:
Liu, Peng
Sponsoring Agency: National Science Foundation
To bridge the gap in cyber-defenses for servers located in enterprises, this project will develop a first-of-its-kind co-design framework, which involves three intertwined components: newly synthesized mathematical models, online learning-based defense algorithms and server retrofitting. The developed defenses will present adversaries optimized dynamically changing attack surfaces, thereby significantly increasing uncertainty and complexity for the adversaries to succeed. They will significantly improve adaptive and autonomous defense capabilities of real-world servers against zero-day attacks during vulnerability windows. Learn more...
Research Areas: Privacy and Security
Term: -